

Charging infrastructure for electric vehicles in city logistics

Getting zero emission trucks on the road Matthijs Otten, CE Delft

Committed to the Environment

CE Delft

- Independent environmental research and consultancy since 1978
- Transport, energy and resources
- Know-how on economics, technology and policy issues
- 60 employees, based in Delft, the Netherlands
- Not-for-profit

Clients

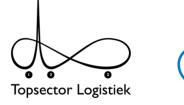
Industries (Small and medium size enterprises, transport, energy and trade associations)

Governments (European Commission, European Parliament, regional and local governments)

NGOs



DISTRICON



Charging infrastructure for electric vehicles in city logistics

Content

Introduction

- Policy context of study
- Scope of study: Case study Amsterdam

Part 1: Optimal charging behaviour

- Method: Optimal charging
- Results: Charging behaviour of trucks in city logistics

Part 2: Applying result to case zero emission Zone Amsterdam

- Method: scaling result for Amsterdam
- Results: Energy and infrastructure demand

Conclusion and discussion

Charging infrastructure for electric vehicles in city logistics

Introduction: Policy context

Paris agreement -> Dutch Climate Agreement

Dutch Climate agreement

- In 2025: ZERO emission zone in 30-40 cities in the Netherlands (1 Mton CO₂ reduction)
- Regulation in zones:
 - Only ZE/ PHEV Vans can enter ZE zones
 - Only ZE/ PHEV HGVs can enter ZE zones, with exemptions for existing HGVs at January 2025:
 - Articulated Truck-trailer Euro VI, age < 8 years
 - Box lorries Euro VI, age < 5 years
- Larger cities are developing plans that will be presented this year.

Introduction: Policy context

Important questions:

- 1. At what location are trucks going to charge: Depot (Private), Customer site (Private), Third party (Public station)?
 - What is role for fleet owners/ distribution centres?
 - What is role of governments
- 2. What kind of battery packs and charging power is needed for the trucks?
- 3. What is the geographical spread in energy/ power demand?
- 4. What is the impact of the energy demand on the electricity network?

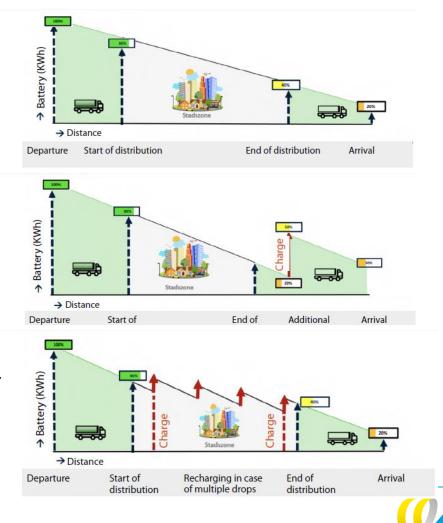
Introduction: Scope of study

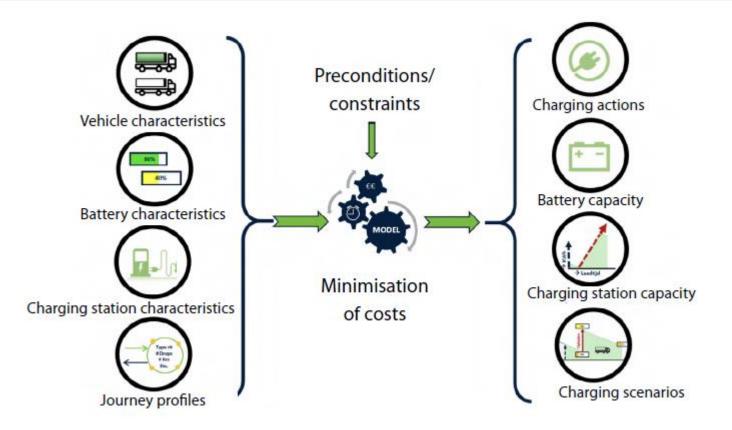
• Case study on ZE zone in Amsterdam (current environmental zone)

 Effects on charing for Greater Amsterdam

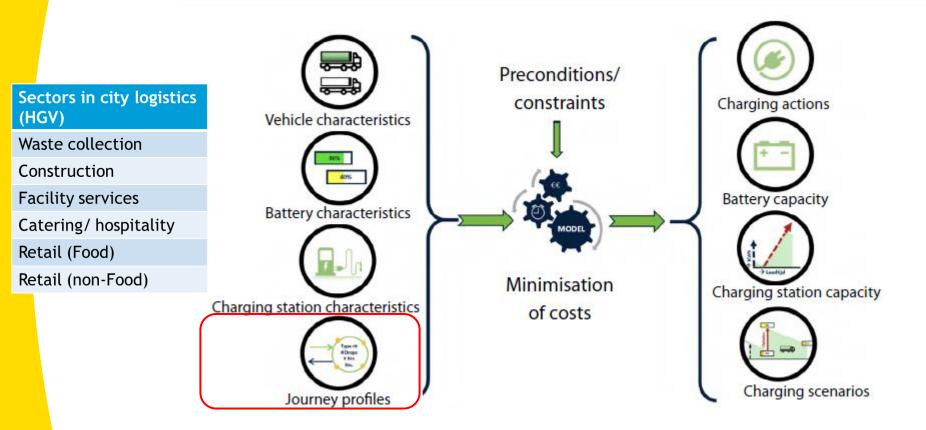
Assumptions

- Logistic profiles remain the same.
- All HGVs will be BEV (no PHEV or H₂)

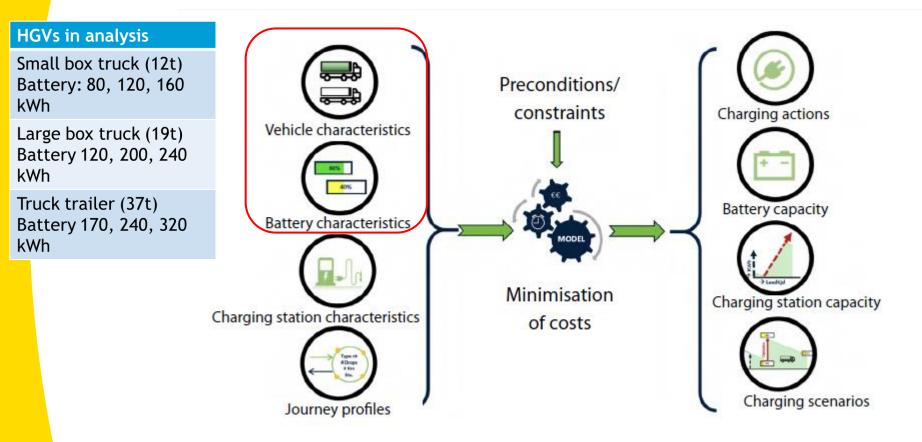

1: Optimal charging behaviour

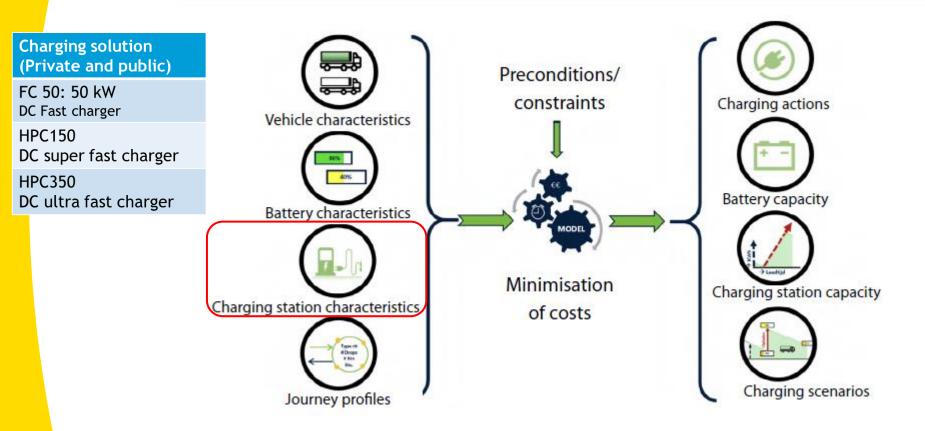

Cost optimisation model: scenarios

Scenario 1: No recharging


Scenario 2: Additional charging stop.

Scenario 3: Charging at the customer (delivery address/stop address).





Results: charging behaviour trucks :

% of kWh charges per location type

Sectors in city logistics (HGV)	Fast charging at public station	At depot/ distribution centre	At customer site
Waste collection	15%	85%	0%
Construction	5%	80%	15%
Facility logistics	5%	85%	10%
Catering/ hospitality	5%	85%	10%
Retail (Food)	5%	75%	20%
Retail (non-Food)	10%	60%	30%

Results: charging behaviour trucks

Share (%) of kWh charged per charging station type

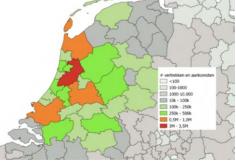
Charging station	Fast charging at public station	At depot/ distribution centre	At customer site
FC50 - private 50 kW		5%	2%
HPC 150 -private -150kW		80%	87 %
HPC 150 - public -150kW	-	-	-
HPC 350 - private -350 kW		15%	11%
HPC 350 -public -350 kW	100%		

Results: charging behaviour trucks

Optimal battery package (% trip profiles studied)

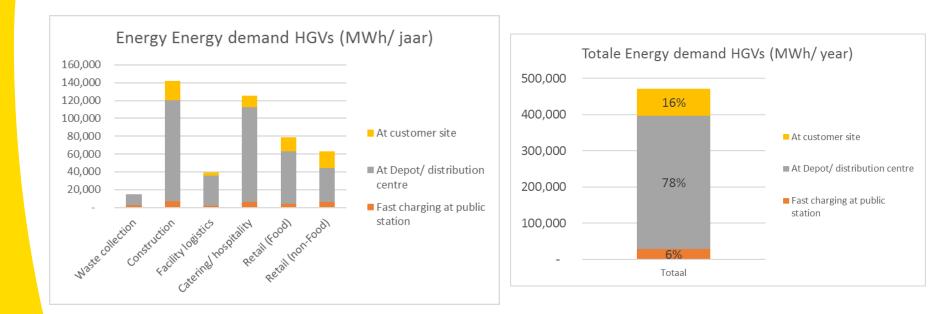
Battery size	Small box truck	Large box truck	Truck trailer	
Small	19 % (80 kWh)	60 % (120 kWh)	6 % (170 kWh)	
Medium	35% (20 kWh)	21% (200 kWh)	14% (240 kWh)	
Large	47% (160 kWh)	19 % (240 kWh)	81% (320 kWh)	

Part 2: Applying results to case Amsterdam


Statistics from annual survey (CBS)

- 4700 trucks visit the environmental zone of Amsterdam regularly
- 325 million kilometres -> 470 GWh energy demand for Electric trucks

	To/ from EZ Amsterdam		All activities	
	# trips / year (x1000)	Distance (mln km)	# trips/ year (x1000)	Distance (mln km)
Truck-trailer	378	26	2,694	204
Box trucks	403	19	1,474	81
Other	150	5	907	40
Total	931	50	5,076	325

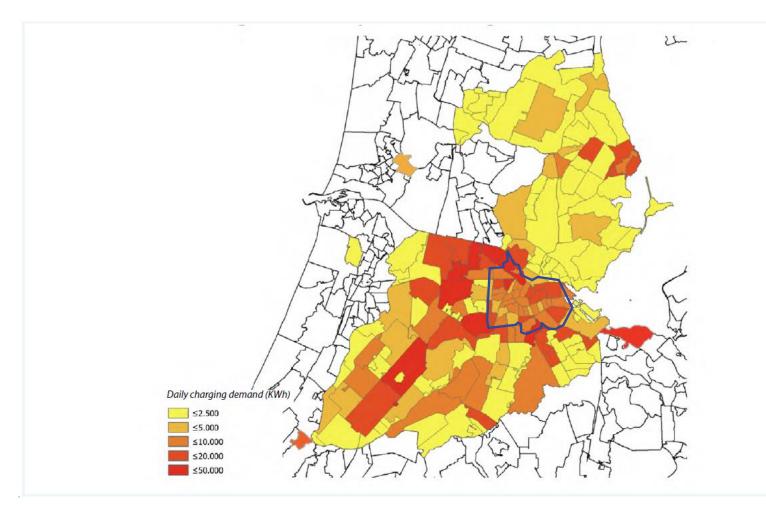

Activity area of trucks

Scaling result for Amsterdam

- Sector in City logistics known for 4700 HGVs (CBS Statics)
 - => Energy demand per sector
 - => Energy demand per type of location (depot, third party, customer)

Geographical allocation of energy demand

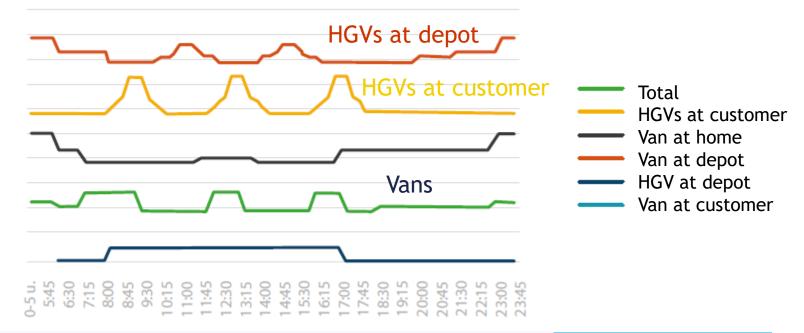
Method


- Depots charging: based on survey information CBS on overnight location trucks (postal code 4 areas)
- Location of customer: Estimated on HGV origin destination relations with Amsterdam (transportation model region Amsterdam)
- Location of fast charging at public station: Traffic intensities on main roads from transportation model.

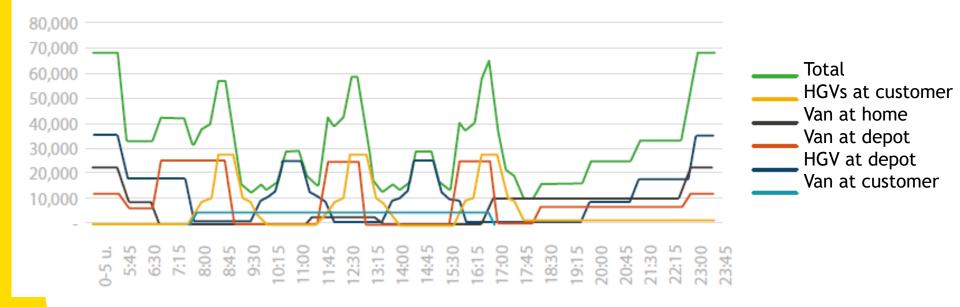
Result

=> Total Energy demand in Greater Amsterdam from HGVs: **123 GWh** (1-2% of total energy demand)

Results: Geographical energy demand (HGVs and vans)



Impact on eletricity net: method


- Conversion of Energy demand in maximum power demand with charging profiles
- Per postal code area, maximum power demand has been calculated.

Charging profiles

Impact on electricity grid: Result Greater Amsterdam

Impact on electricity grid: Result

- Calculation by electricity distribution system operator: Only little increase in power demand on power grid substations
 <0,25% for 25 out of 26 stations, only one station (port area) with a 1.5% increase.
- However: For connections above 2 MW (5 in this case) a direct connection to substation is required.
 - No free field on substation: 1-3 year waiting time
 - Power capacity not sufficient: 3-8 years
- Fleet owners need to consult electricity distribution system operators in time about their situation and plans.

Result: Infrastructure need (HGVs and vans)

Charging point needed: HGV: 1350 Vans 17,130 Charging stations needed: HGVs: 418-772 Vans: 9.700-10,600

Majority (1340 of 1350) Charging point are private (depot/ customer)

Number of charging stations

Conclusion

• Electric HGVs in city logistics will charge mainly at depots and distribution centres at night using 150 kW charging stations.

=> No need for local governments to provide charging infrastructure in city centres

- It seems well possible to perform most of current City logistic operations with electric HGVs
- A zero emission zone in Amsterdam will cause a total energy demand in greater Amsterdam of 120 GWh from Electric HGVs (1-2% of total energy demand).
 - => 350 GWh energy demands outside greater-Amsterdam.
- The increase in power demand due to the charging of electric vehicles is limited (<0,25%)
- For large electric truck fleets (~50): Consult the energy network company in time.

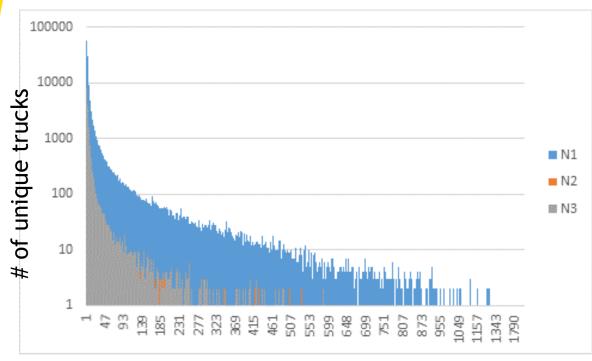
Ongoing discussions and work

Discussion in response to report.

- Electric HGVs are not commercially available on large scale still uncertainty on costs, range: little experience.
- Some logistics parties pioneering with E-trucks are experiencing problems with the range of E-trucks in their operation; there is a big variation in logistical profiles
- ⇒Top Sector Logistics will organize expert/ user discussion groups to share experiences on availability and costs of E-trucks and charging infrastructure.

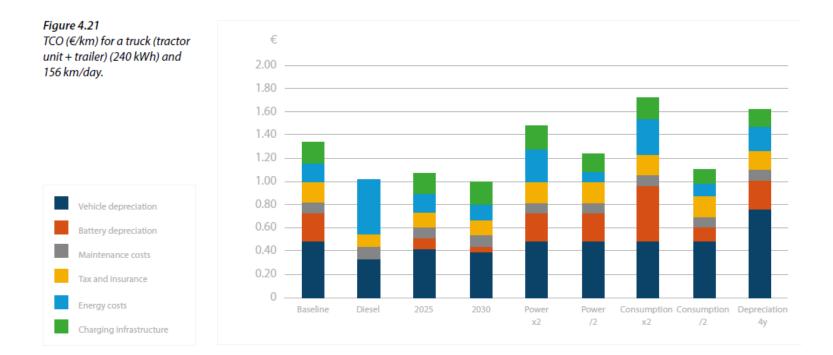
Ongoing research

- Extension of Amsterdam analysis to other cities and possibly group of cities.
- Check of statistical method with camera observations.



Background sheets

Rotterdam


28000 HGVs <20 times/ year 9700 HGVs 10,000 times/ year

4000 HGVs > 20 time/ year in Rotterdam

Annual frequency in Environmental zone Rotterdam

TCO Costs of Electric Trucks vs Diesel

Energy consumption HVGs

- Small box truck: 0.77 kWh/km
- Large Box truck 0.91 kWh/km
- Truck-trailer: 1.75 kWh/km

Cost price per kWh (at given annual consumption)

Table 3.12Overview of the TCO andcost price per kWh for a givenannual consumption.

* The public charging stations have a maximum rate set by the local government (in Amsterdam). The cost price rate is given in brackets.

TCO (FIXED AND VARIABLE)		COST PRICE AT GIVEN ANNUAL CONSUMPTION		
INDICATION OF CHARGING	FIXED COSTS	VARIABLE COSTS	COST PRICE	TOTAL ANNUAL CONSUMPTION
STATION TYPE	PER YEAR €	PER KWH €	AT KWH €	IN KWH
AC3,7 Home	147	0.21	0.22	7,500
AC10 Public*)	982	0.11	0.28 (0.31)	5,000
AC20 Public	1,677	0.11	0.28 (0.45)	5,000
AC20 Private	447	0.13	0.14	30,000
FC50 Public	6,838	0.11	0.37 (0.26)	45,000
FC50 Private	6,370	0.12	0.19	87,500
HPC150 Public	14,625	0.10	0.37 (0.26)	90,000
HPC150 Private	13,146	0.08	0.23	90,000
HPC350 Public	36,575	0.10	0.42 (0.30)	180,000
HPC350 Private	33,429	0.08	0.27	180,000

